ध्वनि : अध्याय 11

हम प्रतिदिन विभिन्न स्रोतों; जैसे मानवों, पक्षियों, घंटियों, मशीनों, वाहनों, टेलिविज़न, रेडियो आदि की ध्वनि सुनते हैं। ध्वनि ऊर्जा का एक रूप है जो हमारे कानों में श्रवण का संवेदन उत्पन्न करती है। ऊर्जा के अन्य रूप भी हैं; जैसे यांत्रिक ऊर्जा, प्रकाश ऊर्जा, आदि। पिछले अध्यायों में आप यांत्रिक ऊर्जा का अध्ययन कर चुके हैं। आपको ऊर्जा संरक्षण के बारे में ज्ञात है। इसके अनुसार आप ऊर्जा को न तो उत्पन्न कर सकते हैं और न ही उसका विनाश कर सकते हैं। आप इसे केवल एक से दूसरे रूप में रूपांतरित कर सकते हैं। जब आप ताली बजाते हैं तो ध्वनि उत्पन्न होती है। क्या आप अपनी ऊर्जा का उपयोग किए बिना ध्वनि उत्पन्न कर सकत हैं? ध्वनि उत्पन्न करने के लिए आपने ऊर्जा के किस रूप का उपयोग किया? इस अध्याय में हम सीखेंगे कि ध्वनि कैसे उत्पन्न होती है और किसी माध्यम में यह किस प्रकार संचरित होकर हमारे कानों द्वारा ग्रहण की जाती है।

11.1 ध्वनि का उत्पादन

क्रियाकलाप 11.1

• एक स्वरित्र द्विभुज लीजिए और इसकी किसी भुजा को एक रबड़ के पैड पर मार कर इसे कंपित कराइए।

• इसे अपने कान के समीप लाइए।

• क्या आप कोई ध्वनि सुन पाते हैं? कंपमान स्वरित्र द्विभुज की एक भुजा को अपनी अंगुली से स्पर्श कीजिए और अपने अनुभव को अपने मित्रों के साथ बाँटिए।

• अब एक टेबल टेनिस या एक छोटी प्लास्टिक की गेंद को एक धागे की सहायता से किसी आधार से लटकाइए (एक लंबी सूई और धागा लीजिए। धागे के एक सिरे पर एक गाँठ लगाइए और सूई की सहायता से धागे को गेंद में पिरोइए)। पहले कंपन न करते हुए स्वरित्र द्विभुज की एक भुजा से गेंद को स्पर्श कीजिए। फिर कंपन करते हुए स्वरित्र द्विभुज की एक भुजा से गेंद को स्पर्श कीजिए (चित्र 11.1)।

• देखिए क्या होता है? अपने मित्रों के साथ विचार-विमर्श कीजिए और दोनों अवस्थाओं में अंतर की व्याख्या करने का प्रयत्न कीजिए।

क्रियाकलाप 11.2

• एक बीकर या गिलास को ऊपर तक पानी से भरिए। कंपप्तान स्वरित्र द्विभुज की एक भुजा को चित्र 11.2 में दर्शाए अनुसार पानी की सतह से स्पर्श कराइए।

• अब चित्र 11.3 में दर्शाए अनुसार कंपमान स्वरित्र द्विभुज की दोनों भुजाओं को पानी में डुबोइए।

• देखिए कि दोनों अवस्थाओं में क्या होता है?

• अपने साथियों के साथ विचार-विमर्श कीजिए कि ऐसा क्यों होता है?

उपरोक्त क्रियाकलापों से आप क्या निष्कर्ष निकालते हैं? क्या आप किसी कंपमान वस्तु के बिना ध्वनि उत्पन्न कर सकते हैं?

अब तक वर्णित क्रियाकलापों में हमने स्वरित्त्र द्विभुज से आघात द्वारा ध्वनि उत्पन्न की। हम विभिन्न वस्तुओं में घर्षण द्वारा, खुरच कर, रगड़ कर, वायु फूँक कर या उनको हिलाकर ध्वनि उत्पन्न कर सकते हैं। इन क्रियाकलापों में हम क्या करते हैं? हम वस्तु को कंपमान करते हैं और ध्वनि उत्पन्न करते हैं। कंपन का अर्थ होता है किसी वस्तु का तेजी से बार-बार इधर-उधर गति करना। मनुष्यों में वाकध्वनि उनके वाक-तंतुओं के कंपित होने के कारण उत्पन्न होती है। जब कोई पक्षी अपने पंख को फड़फड़ाता है तो क्या आप कोई ध्वनि सुनते हैं? क्या आप जानते हैं कि मक्खी भिनभिनाने की ध्वनि कैसे उत्पन्न करती है? एक खींचे हुए रबड़ के छल्ले को बीच में से खींच कर छोड़ने पर यह कंपन करता है और ध्वनि उत्पन्न करता है। यदि आपने कभी ऐसा नहीं किया है तो इसे कीजिए और तनी हुई रबड़ के छल्ले के कंपनों को देखिए।

क्रियाकलाप 11.3

• विभिन्न वाद्य यंत्रों की सूची बनाइए और अपने मित्रों के साथ विचार-विमर्श कीजिए कि ध्वनि उत्पन्न करने के लिए इन वाद्य यंत्रों का कौन-सा भाग कंपन करता है।

11.2 ध्वनि का संचरण

हम जानते हैं कि ध्वनि कंपन करती हुई वस्तुओं द्वारा उत्पन्न होती है। द्रव्य या पदार्थ जिससे होकर ध्वनि संचरित होती है, माध्यम कहलाता है। यह ठोस, द्रव या गैस हो सकता है। स्रोत से उत्पन्न होकर ध्वनि सुनने वाले तक किसी माध्यम से होकर पहुँचती है। जब कोई वस्तु कंपन करती है तो यह अपने चारों ओर विद्यमान माध्यम के कणों को कंपमान कर देती है। ये कण कंपमान वस्तु से हमारे कानों तक स्वयं गति कर नहीं पहुँचते। सबसे पहले कंपमान वस्तु के संपर्क में रहने वाले माध्यम के कण अपनी संतुलित अवस्था से विस्थापित होते हैं। ये अपने समीप के कणों पर एक बल लगाते हैं। जिसके फलस्वरूप निकटवर्ती कण अपनी विरामावस्था से विस्थापित हो जाते हैं। निकटवर्ती कणों को विस्थापित करने के पश्चात् प्रारंभिक कण अपनी मूल अवस्थाओं में वापस लौट आते हैं। माध्यम में यह प्रक्रिया तब तक चलती रहती है जब तक कि ध्वनि आपके कानों तक नहीं पहुँच जाती है। माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ (माध्यम के कण नहीं) माध्यम से होता हुआ संचरित होता है।

तरंग एक विक्षोभ है जो किसी माध्यम से होकर गति करता है और माध्यम के कण निकटवर्ती कणों में गति उत्पन्न कर देते हैं। ये कण इसी प्रकार की गति अन्य कणों में उत्पन्न करते हैं। माध्यम के कण स्वयं आगे नहीं बढ़ते, लेकिन विक्षोभ आगे बढ़ जाता है। किसी माध्यम में ध्वनि के संचरण के समय ठीक ऐसा ही होता है। इसलिए ध्वनि को तरंग के रूप में जाना जा सकता है। ध्वनि तरंगें माध्यम के कणों की गति द्वारा अभिलक्षित की जाती हैं और यांत्रिक तरंगें कहलाती हैं।

ध्वनि के संचरण के लिए वायु सबसे अधिक सामान्य माध्यम है। जब कोई कंपमान वस्तु आगे की ओर कंपन करती है तो अपने सामने की वायु को धक्का देकर संपीडित करती है और इस प्रकार एक उच्च दाब का क्षेत्र उत्पन्न होता है। इस क्षेत्र को संपीडन (C) कहते हैं (चित्र 11.4)। यह संपीडन कंपमान वस्तु से दूर आगे की ओर गति करता है। जब कंपमान वस्तु पीछे की ओर कंपन करती है तो एक निम्न दाब का क्षेत्र उत्पन्न होता है जिसे विरलन (R) कहते हैं (चित्र 11.4)। जब वस्तु कंपन करती है अर्थात आगे और पीछे तेज़ी से गति करती है तो वायु में संपीडन और विरलन की एक श्रेणी बन जाती है। यही संपीडन और विरलन ध्वनि तरंग बनाते हैं जो माध्यम से होकर संचरित होती है। संपीडन उच्च दाब का क्षेत्र है और विरलन निम्न दाब का क्षेत्र है। दाब किसी माध्यम के दिए हुए आयतन में कणों की संख्या से संबंधित है। किसी माध्यम में कणों का अधि क घनत्व अधिक दाब को और कम घनत्व कम दाब को दर्शाता है। इस प्रकार ध्वनि का संचरण घनत्व परिवर्तन के संचरण के रूप में भी देखा जा सकता है।

11.2.1 ध्वनि तरंगें अनुदैर्ध्य तरंगें हैं

क्रियाकलाप 11.4

• एक स्लिंकी लीजिए। अब स्लिंकी को चित्र 11.5 (a) में दर्शाए अनुसार खींचिए। अपने मित्र की ओर स्लिंकी को एक तीव्र झटका दें। आप क्या देखते हैं? यदि आप अपने हाथ से स्लिंकी को लगातार आगे-पीछे बारी-बारी से धक्का देते और खींचते रहें, तो आप क्या देखेंगे?

• यदि आप स्लिंकी पर एक चिह्न लगा दें, तो आप देखेंगे कि स्लिंकी पर लगा चिह्न विक्षोभ के संचरण की दिशा के समांतर आगे-पीछे गति करता है।

उन क्षेत्रों को जहाँ स्लिंकी की कुंडलियाँ पास-पास आ जाती हैं संपीडन (C) और उन क्षेत्रों को जहाँ कुंडलियाँ दूर-दूर हो जाती हैं विरलन (R) कहते हैं। आप जानते हैं कि किसी माध्यम में ध्वनि संपीडनों तथा विरलनों के रूप में संचरित होती है। अब आप किसी स्लिंकी में विक्षोभ के संचरण तथा किसी माध्यम में विक्षोभ की तुलना कर सकते हैं। ये तरंगें अनुदैर्ध्य तरंगें कहलाती हैं। इन तरंगों में माध्यम के कणों का विस्थापन विक्षोभ के संचरण की दिशा के समांतर होता है। कण एक स्थान से दूसरे स्थान तक गति नहीं करते लेकिन अपनी विराम अवस्था से आगे-पीछे दोलन करते हैं। ठीक इसी प्रकार ध्वनि तरंगें संचरित होती हैं, अतएव ध्वनि तरंगें अनुदैर्ध्य तरंगें हैं।

यदि आप स्लिंकी के अपने हाथ में पकड़े सिरे को आगे-पीछे धक्का न देकर दाएँ-बाएँ हिलाएँ तब भी आपको स्लिंकी में तरंग उत्पन्न होती दिखाई देगी। इस तरंग में कण तरंग संचरण की दिशा में कंपन नहीं करते लेकिन तरंग के चलने की दिशा के लंबवत् अपनी विराम अवस्था के ऊपर-नीचे कंपन करते हैं। इस प्रकार की तरंग को अनुप्रस्थ तरंग कहते हैं। इस प्रकार अनुप्रस्थ तरंग वह तरंग है जिसमें माध्यम के कण अपनी माध्य स्थितियों पर तरंग के संचरण की दिशा के लंबवत् गति करते हैं। किसी तालाब में पत्थर का टुकड़ा फेंकने पर जल की सतह पर दिखाई देने वाली तरंगें अनुप्रस्थ तरंग का एक उदाहरण है। प्रकाश भी अनुप्रस्थ तरंग है। किंतु प्रकाश में दोलन माध्यम के कणों या उनके दाब या घनत्व के नहीं होते। प्रकाश तरंगें यांत्रिक तरंगें नहीं है। आप अनुप्रस्थ तरंगों के बारे में अधिक जानकारी उच्च कक्षाओं में प्राप्त करेंगे।

11.2.2 ध्वनि तरंग के अभिलक्षण

किसी ध्वनि तरंग के निम्नलिखित अभिलक्षण होते हैं:

• आवृत्ति
• आयाम
• वेग

ध्वनि तरंग को ग्राफीय रूप में चित्र 11.6(c) में दिखाया गया है, जो प्रदर्शित करता है कि जब ध्वनि तरंग किसी माध्यम में गति करती है तो घनत्व तथा दाब में कैसे परिवर्तन होता है। किसी निश्चित समय पर माध्यम का घनत्व तथा दाब दोनों ही उनके औसत मान से ऊपर और नीचे दूरी के साथ परिवर्तित होते हैं। चित्र 11.6 (a) तथा 11.6 (b) प्रदर्शित करते हैं कि जब ध्वनि तरंग माध्यम में संचरित होती है तो घनत्व तथा दाब में क्या उतार-चढ़ाव होते हैं।

संपीडन वह क्षेत्र है जहाँ कण पास-पास आ जाते हैं, इन्हें वक्र के ऊपरी भाग में दिखाया गया है [चित्र 11.6 (c)] । शिखर अधिकतम संपीडन के क्षेत्र को प्रदर्शित करता है। इस प्रकार संपीडन वह क्षेत्र है जहाँ घनत्व तथा दाब दोनों ही अधिक होते है। विरलन निम्न दाब के क्षेत्र हैं जहाँ कण दूर-दूर हो जाते हैं और उन्हें घाटी से प्रदर्शित करते हैं। इन्हें वक्र के निम्न भाग से दिखाया गया है [चित्र 11.6 (c)]। शिखर को तरंग का श्रृंग तथा घाटी को गर्त कहा जाता है। दो क्रमागत संपीडनों (C) अथवा दो क्रमागत विरलनों (R) के बीच की दूरी तरंगदैर्ध्य कहलाती है। तरंगदैर्ध्य को साधारणतः λ (ग्रीक अक्षर लैम्डा) से निरूपित किया जाता है। इसका SI मात्रक मीटर (m) है।

आवृत्ति से हमें ज्ञात होता है कि कोई घटना कितनी जल्दी-जल्दी घटित होती है। मान लीजिए आप किसी ढोल को पीट-पीट कर बजा रहे हैं। आप ढोल को एक सेकंड में जितनी बार पीटते हैं वह आपके द्वारा ढोल को पीटने की आवृत्ति है। हम जानते हैं कि जब ध्वनि किसी माध्यम में संचरित होती है तो माध्यम का घनत्व किसी अधिकतम तथा न्यूनतम मान के बीच बदलता है। घनत्व के अधिकतम मान से न्यूनतम मान तक परिवर्तन में और पुनः अधिकतम मान तक आने पर एक दोलन पूरा होता है। एकांक समय में इन दोलनों की कुल संख्या ध्वनि तरंग की आवृत्ति कहलाती है। यदि हम प्रति एकांक समय में अपने पास से गुजरने वाले संपीडनों तथा विरलनों की संख्या की गणना करें तो हमको ध्वनि तरंग की आवृत्ति ज्ञात हो जाएगी। इसे सामान्यतया (ग्रीक अक्षर, न्यू) से प्रदर्शित किया जाता है। इसका SI मात्रक हर्ज (hertz, प्रतीक Hz) है।

चित्र 11.6: चित्र 11.6 (a) तथा 11.6 (b) में दिखाया गया है कि ध्वनि घनत्व या दाब के उतार-चढ़ाव के रूप में संचरित होती है। चित्र 11.6 (c) में घनत्व तथा दाब के उतार-चढ़ाव को ग्राफीय रूप में प्रदर्शित किया गया है।

दो क्रमागत संपीडनों या दो क्रमागत विरलनों को किसी निश्चित बिंदु से गुजरने में लगे समय को तरंग का आवर्त काल कहते हैं। आप कह सकते हैं कि एक संपूर्ण दोलन में लिया गया समय ध्वनि तरंग का आवर्त काल कहलाता करते हैं। इसका है। इसे T’ अक्षर से निरूपित SI मात्रक सेकंड (s) है। आवृत्ति तथा आवर्त काल के बीच संबंध को निम्न प्रकार व्यक्त किया जा सकता है :
v = 1/T
इस प्रकार एक उच्च तारत्व की ध्वनि से हमें ज्ञात होता है कि किसी बिंदु से एकांक समय में संपीडन तथा विरलन की अधिक संख्या गुजरती है।

किसी आरकेस्ट्रा (वाद्यवृंद) में वायलिन तथा बाँसुरी एक ही समय बजाई जा सकती हैं। दोनों ध्वनियाँ एक ही माध्यम (वायु) में चलती हैं और हमारे कानों तक एक ही समय पर पहुँचती हैं। दोनों ही स्त्रोतों की ध्वनियाँ एक ही चाल से चलती हैं। लेकिन जो ध्वनियाँ हम ग्रहण करते हैं वे भिन्न-भिन्न हैं। ऐसा ध्वनि से जुड़े विभिन्न अभिलक्षणों के कारण है। तारत्व इनमें से एक अभिलक्षण है।

किसी उत्सर्जित ध्वनि की आवृत्ति को मस्तिष्क किस प्रकार अनुभव करता है, उसे तारत्व कहते हैं। किसी स्त्रोत का कंपन जितनी शीघ्रता से होता है, आवृत्ति उतनी ही अधिक होती है और उसका तारत्व भी अधिक होता है। इसी प्रकार जिस ध्वनि का तारत्व कम होता है उसकी आवृत्ति भी कम होती है जैसा कि चित्र 11.7 में दर्शाया गया है।

विभिन्न आकार तथा आकृति की वस्तुएँ विभिन्न आवृत्तियों के साथ कंपन करती हैं और विभिन्न तारत्व की ध्वनियाँ उत्पन्न करती हैं।

किसी माध्यम में मूल स्थिति के दोनों ओर अधिकतम विक्षोभ को तरंग का आयाम कहते हैं। इसे साधारणतः अक्षर A से निरूपित किया जाता है।

चित्र 11.7: निम्न तारत्व की ध्वनि की आवृत्ति कम तथा उच्च तारत्व की ध्वनि की आवृत्ति अधिक होती है

जैसा कि चित्र 11.6(c) में दिखाया गया है। ध्वनि के लिए इसका मात्रक दाब या घनत्व का मात्रक होगा। ध्वनि की प्रबलता अथवा मृदुता मूलतः इसके आयाम से ज्ञात की जाती है। यदि हम किसी मेज़ पर धीरे से चोट मारें, तो हमें एक मृदु ध्वनि सुनाई देगी क्योंकि हम कम ऊर्जा की ध्वनि तरंग उत्पन्न करते हैं। यदि हम मेज पर जोर से चोट मारें तो हमें प्रबल ध्वनि सुनाई देगी। क्या आप इसका कारण बता सकते हैं? उत्पादक स्रोत से निकलने के पश्चात् ध्वनि तरंग फैल जाती है। स्त्रोत से दूर जाने पर इसका आयाम तथा प्रबलता दोनों ही कम होते जाते हैं। प्रबल ध्वनि अधिक दूरी तक चल सकती है क्योंकि यह अधिक ऊर्जा से संबद्ध है। चित्र 11.8 में समान आवृत्ति की प्रबल तथा मृदु ध्वनि की तरंग आकृतियाँ प्रदर्शित की गई हैं।

चित्र 11.8: मृदु ध्वनि का आयाम कम होता है तथा प्रबल ध्वनि का आयाम अधिक होता है

ध्वनि की यह गुणता (timbre) वह अभिलक्षण है जो हमें समान तारत्व तथा प्रबलता की दो ध्वनियों में अंतर करने में सहायता करता है। एकल आवृत्ति की ध्वनि को टोन कहते हैं। अनेक आवृत्तियों के मिश्रण से उत्पन्न ध्वनि को स्वर (note) कहते हैं और यह सुनने में सुखद होती है। शोर (noise) कर्णप्रिय नहीं होता जबकि संगीत सुनने मे सुखद होता है ।

तरंग के किसी बिंदु जैसे एक संपीडन या एक विरलन द्वारा एकांक समय में तय की गई दूरी तरंग वेग कहलाती है।
हम जानते हैं
वेग = दूरी/समय
= λ/T = λ × 1/T
यहां λ ध्वनि की तरंगदैर्ध्य है। यह तरंग द्वारा एक आवर्त काल  (T) में चली गई दूरी है। अतः
v = υ/λ
υ = λν
वेग = तरंगदैर्ध्य × आवृत्ति

किसी माध्यम के लिए समान भौतिक परिस्थितियों में ध्वनि का वेग सभी आवृत्तियों के लिए लगभग स्थिर रहता है।

उदाहरण 11.1 किसी ध्वनि तरंग की आवृत्ति 2 kHz और उसकी तरंगदैर्ध्य 35 cm है। यह 1.5 km दूरी चलने में कितना समय लेगी?
हल: दिया हुआ है,
आवृत्ति, v = 2 kHz = 2000 Hz
तरंगदैर्घ्य, λ = 35 cm = 0.35 m
हम जानते हैं, तरंग वेग v = तरंगदैर्ध्य x आवृत्ति
= 0.35 m x 2000 Hz = 700 m/s
तरंग को 1.5 km दूरी तय करने में लगने वाला समय = दूरी/ वेग
= 1.5 × 1000m/700m/s
= 2.1 s
ध्वनि 1.5 km तय करने में 2.1 s समय लेगी।

किसी एकांक क्षेत्रफल से एक सेकंड में गुजरने वाली ध्वनि ऊर्जा को ध्वनि की तीव्रता कहते हैं। यद्यपि हम कभी-कभी ‘प्रबलता’ तथा ‘तीव्रता’ शब्दों का पर्याय के रूप में उपयोग करते हैं लेकिन इनका अर्थ एक ही नहीं है। प्रबलता ध्वनि के लिए कानों की संवेदनशीलता की माप है। यद्यपि दो ध्वनियाँ समान तीव्रता की हो सकती हैं फिर भी हम एक को दूसरे की अपेक्षा अधिक प्रबल ध्वनि के रूप में सुन सकते हैं क्योंकि हमारे कान इसके लिए अधिक संवेदनशील हैं।

11.2.3 विभिन्न माध्यमों में ध्वनि की चाल

किसी माध्यम में ध्वनि एक निश्चित चाल से संचरित होती है। किसी पटाखे या तड़ित के गर्जन की ध्वनि प्रकाश की चमक दिखाई देने के कुछ देर बाद सुनाई देती है। इसलिए हम यह निष्कर्ष निकाल सकते हैं कि ध्वनि की चाल प्रकाश की चाल से बहुत कम है। ध्वनि की चाल उस माध्यम के गुणों पर निर्भर करती है जिसमें ये संचरित होती है। आप इस संबंध को अपनी उच्च कक्षाओं में सीखेंगे। किसी माध्यम में ध्वनि की चाल माध्यम के ताप पर निर्भर करती है। जब हम ठोस से गैसीय अवस्था की ओर जाते हैं तो ध्वनि की चाल कम होती जाती है। किसी भी माध्यम में ताप बढ़ाने पर ध्वनि की चाल भी बढ़ती है। उदाहरण के लिए वायु में ध्वनि की चाल 0°C पर 331 m/s तथा 22 C पर 344 m/s है। सारणी 11.1 में विभिन्न माध्यमों में एक विशेष ताप पर ध्वनि की चाल को दर्शाया गया है। (इसे आपको याद रखने की आवश्यकता नहीं है।)

11.3 ध्वनि का परावर्तन

किसी ठोस या द्रव से टकराकर ध्वनि उसी प्रकार वापस लौटती है जैसे कोई रबड़ की गेंद किसी दीवार से टकराकर वापस आती है। प्रकाश की भाँति ध्वनि भी किसी ठोस या द्रव की सतह से परावर्तित होती है तथा परावर्तन के उन्हीं नियमों का पालन करती है जिनका अध्ययन आप अपनी पिछली कक्षाओं में कर चुके हैं। परावर्तक सतह पर खींचे गए अभिलंब तथा ध्वनि के आपतन होने की दिशा तथा परावर्तन होने की दिशा के बीच बने कोण आपस में बराबर होते हैं और ये तीनों दिशाएँ एक ही तल में होती हैं। ध्वनि तरंगों के परावर्तन के लिए बड़े आकार के अवरोधक की आवश्यकता होती है जो चाहे पालिश किए हुए हों या खुरदरे।

क्रियाकलाप 11.5

• चित्र 11.9 की भाँति दो एक जैसे पाइप लीजिए। आप चार्ट पेपर की सहायता से ऐसे पाइप बना सकते हैं।

• पाइपों की लंबाई पर्याप्त होनी चाहिए (चार्ट पेपर की लंबाई के बराबर)।

• इन्हें दीवार के समीप किसी मेज़ पर व्यवस्थित कीजिए। एक पाइप के खुले सिरे के पास एक घड़ी रखिए तथा दूसरे पाइप की ओर से घड़ी की ध्वनि सुनने की कोशिश कीजिए।

• दोनों पाइपों की स्थिति को इस प्रकार समायोजित कीजिए जिससे कि आपको घड़ी की ध्वनि अच्छी प्रकार स्पष्ट रूप से सुनाई देने लगे।

• इन पाइपों तथा अभिलंब के बीच के कोणों को मापिए तथा इनके बीच के संबंध को देखिए।

• दाईं ओर के पाइप को ऊर्ध्वाधर दिशा में थोड़ी सी ऊँचाई तक उठाइए और देखिए क्या होता है?

(इस क्रियाकलाप में घड़ी के स्थान पर किसी कम्पन्न मोड पर रखे मोबाइल फोन का उपयोग किया जा सकता है।)

11.3.1 प्रतिध्वनि

किसी उचित परावर्तक वस्तु जैसे किसी इमारत अथवा पहाड़ के निकट यदि आप जोर से चिल्लाएँ या ताली बजाएँ तो आपको कुछ समय पश्चात् वही ध्वनि फिर से सुनाई देती है। आपको सुनाई देने वाली इस ध्वनि को प्रतिध्वनि कहते हैं। हमारे मस्तिष्क में ध्वनि की संवेदना लगभग 0.1s तक बनी रहती है। स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावर्तित ध्वनि के बीच कम से कम 0.1s का समय अंतराल अवश्य होना चाहिए। यदि हम किसी दिए हुए ताप, जैसे 22 C पर ध्वनि की चाल 344 m/s मान लें तो ध्वनि को अवरोधक तक जाने तथा परावर्तन के पश्चात् वापस श्रोता तक 0.1s के पश्चात् पहुँचना चाहिए। अतः श्रोता से परावर्तक सतह तक जाने तथा वापस आने में ध्वनि द्वारा तय की गई कुल दूरी कम से कम (344 m/s) x 0.1 s = 34.4m होनी चाहिए। अतः स्पष्ट प्रतिध्वनि सुनने के लिए अवरोधक की ध्वनि स्त्रोत से न्यूनतम दूरी ध्वनि द्वारा तय की गई कुल दूरी की आधी अर्थात् 17.2 m अवश्य होनी चाहिए। यह दूरी वायु के ताप के साथ बदल जाती है क्योंकि ताप के साथ ध्वनि के वेग में भी परिवर्तन हो जाता है। ध्वनि के बारंबार परावर्तन के कारण हमें एक से अधिक प्रतिध्वनियाँ भी सुनाई दे सकती हैं। बादलों के गड़गड़ाहट की ध्वनि कई परावर्तक पृष्ठों जैसे बादलों तथा भूमि से बारंबार परावर्तन के फलस्वरूप उत्पन्न होती है।

11.3.2 अनुरणन

किसी बड़े हॉल में उत्पन्न होने वाली ध्वनि दीवारों से बारंबार परावर्तन के कारण काफी समय तक बनी रहती है जब तक कि यह इतनी कम न हो जाए कि यह सुनाई ही न पड़े। यह बारंबार परावर्तन जिसके कारण ध्वनि-निर्बंध होता है, अनुरणन कहलाता है। किसी सभा भवन या बड़े हॉल में अत्यधिक अनुरणन अत्यंत अवांछनीय है। अनुरणन को कम करने के लिए सभा भवन की छतों तथा दीवारों पर ध्वनि अवशोषक पदार्थों जैसे संपीडित फाइबर बोर्ड, खुरदरे प्लास्टर अथवा पर्दे लगे होते हैं। सीटों के पदार्थों का चुनाव इनके ध्वनि अवशोषक गुणों के आधार पर भी किया जाता है।

उदाहरण 11.2 एक मनुष्य किसी खड़ी चट्टान के पास ताली बजाता है और उसकी प्रतिध्वनि 2s के पश्चात् सुनाई देती है। यदि ध्वनि की चाल 346 m/s ली जाए, तो चट्टान तथा मनुष्य के बीच की दूरी कितनी होगी?
हल: ध्वनि की चाल, v = 346 m/s
प्रतिध्वनि सुनने में लिया गया समय t = 2 s
ध्वनि द्वारा चली गई दूरी = v x t = 346 m/s x 2 s = 692 m
2s में ध्वनि ने चट्टान तथा मनुष्य के बीच की दोगनी दूरी तय की। अतएव चट्टान तथा मनुष्य के बीच की दूरी = 692 m/2 = 342 m.

11.3.3 ध्वनि के बहुल परावर्तन के उपयोग

1. मेगाफ़ोन या लाउडस्पीकर, हॉर्न, तूर्य तथा शहनाई जैसे वाद्य यंत्र, सभी इस प्रकार बनाए जाते हैं कि ध्वनि सभी दिशाओं में फैले बिना केवल एक विशेष दिशा में ही जाती है, जैसा कि चित्र 11.10 में दर्शाया गया है।

इन यंत्रों में एक नली का आगे का खुला भाग शंक्वाकार होता है। यह स्रोत से उत्पन्न होने वाली ध्वनि तरंगों को बार-बार परावर्तित करके श्रोताओं की ओर आगे की दिशा में भेज देता है।

2. स्टेथोस्कोप एक चिकित्सा यंत्र है जो शरीर के अंदर, मुख्यतः हृदय तथा फेफड़ों में, उत्पन्न होने वाली ध्वनि को सुनने में काम आता है। स्टेथोस्कोप में रोगी के हृदय की धड़कन की ध्वनि, बार-बार परावर्तन के कारण डॉक्टर के कानों तक पहुँचती है (चित्र 11.11)।

3. कंसर्ट हॉल, सम्मेलन कक्षों तथा सिनेमा हॉल की छतें वक्राकार बनाई जाती हैं जिससे कि परावर्तन के पश्चात् ध्वनि हॉल के सभी भागों में पहुँच जाए, जैसा कि चित्र 11.12 में दर्शाया गया है। कभी-कभी वक्राकार ध्वनि-पट्टों को मंच के पीछे रख दिया जाता है जिससे कि ध्वनि, ध्वनि-पट्ट से परावर्तन के पश्चात् समान रूप से पूरे हॉल में फैल जाए (चित्र 11.13)।

11.4 श्रव्यता का परिसर

हम सभी आवृत्ति की ध्वनियों को नहीं सुन सकते। मनुष्यों में ध्वनि की श्रव्यता का परिसर लगभग 20 Hz से 20,000 Hz (one Hz = one cycle/s) तक होता है। पाँच वर्ष से कम आयु के बच्चे तथा कुछ जंतु जैसे कुत्ते 25 kHz तक की ध्वनि सुन सकते हैं। ज्यों-ज्यों व्यक्तियों की आयु बढ़ती जाती है उनके कान उच्च-आवृत्तियों के लिए कम सुग्राही होते जाते हैं। 20 Hz से कम आवृत्ति की ध्वनियों को अवश्रव्य ध्वनि कहते हैं। यदि हम अवश्रव्य ध्वनि को सुन पाते तो हम किसी लोलक के कंपनों को उसी प्रकार सुन पाते जैसे कि हम किसी मक्खी पंखों के कंपनों को सुन पाते हैं। राइनोसिरस (गैंडा) 5 Hz तक की आवृत्ति की अवश्रव्य ध्वनि का उपयोग करके संपर्क स्थापित करता है। ह्वेल तथा हाथी अवश्रव्य ध्वनि परिसर की ध्वनियाँ उत्पन्न करते हैं। यह देखा गया है कि कुछ जंतु भूकंप से पहले परेशान हो जाते हैं। भूकंप मुख्य प्रघाती तरंगों से पहले निम्न आवृत्ति की अवश्रव्य ध्वनि उत्पन्न करते हैं, जो संभवतः जंतुओं को सावधान कर देती है। 20 kHz से अधिक आवृत्ति की ध्वनियों को पराश्रव्य ध्वनि या पराध्वनि कहते हैं। डॉलफिन, चमगादड़ और पॉरपॉइज जैसे जंतु पराध्वनि उत्पन्न करते हैं। कुछ प्रजाति के शलभों (moths) के श्रवण यंत्र अत्यंत सुग्राही होते हैं। ये शलभ चमगादड़ों द्वारा उत्पन्न उच्च आवृत्ति की चींचीं की ध्वनि को सुन सकते हैं। उन्हें अपने आस-पास उड़ते हुए चमगादड़ के बारे में जानकारी मिल जाती है और इस प्रकार स्वयं को पकड़े जाने से बचा पाते हैं। चूहे भी पराध्वनि उत्पन्न करके कुछ खेल खेलते हैं।

11.5 पराध्वनि के अनुप्रयोग

पराध्वनियाँ उच्च आवृत्ति की तरंगें हैं। पराध्वनियाँ अवरोधों की उपस्थिति में भी एक निश्चित पथ पर गमन कर सकती हैं। उद्योगों तथा चिकित्सा के क्षेत्र में पराध्वनियों का विस्तृत रूप से उपयोग किया जाता है।

• पराध्वनि प्रायः उन भागों को साफ करने में उपयोग की जाती है जिन तक पहुँचना कठिन होता है; जैसे सर्पिलाकार नली, विषम आकार के पुर्जे, इलेक्ट्रॉनिक अवयव आदि। जिन वस्तुओं को साफ़ करना होता है उन्हें साफ़ करने वाले मार्जन विलयन में रखते हैं और इस विलयन में पराध्वनि तरंगें भेजी जाती हैं। उच्च आवृत्ति के कारण, धूल, चिकनाई तथा गंदगी के कण अलग होकर नीचे गिर जाते हैं। इस प्रकार वस्तु पूर्णतया साफ हो जाती है।

• पराध्वनि का उपयोग धातु के ब्लॉकों (पिंडों) में दरारों तथा अन्य दोषों का पता लगाने के लिए किया जा सकता है। धात्विक घटकों को प्रायः बड़े-बड़े भवनों, पुलों, मशीनों तथा वैज्ञानिक उपकरणों को बनाने के लिए उपयोग में लाया जाता है। धातु के ब्लॉकों में विद्यमान दरार या छिद्र जो बाहर से दिखाई नहीं देते, भवन या पुल की संरचना की मज़बूती को कम कर देते हैं। पराध्वनि तरंगें धातु के ब्लॉक से गुज़ारी (प्रेषित की) जाती हैं और प्रेषित तरंगों का पता लगाने के लिए संसूचकों का उपयोग किया जाता है। यदि थोड़ा-सा भी दोष होता है, तो पराध्वनि तरंगें परावर्तित हो जाती हैं जो दोष की उपस्थिति को दर्शाती है (चित्र 11.14)।

साधारण ध्वनि जिसकी तरंगदैर्ध्य अधिक होती है, दोषयुक्त स्थान के कोणों से मुड़कर संसूचक तक पहुँच जाती है, इसलिए इस ध्वनि का उपयोग इस कार्य के लिए नहीं किया जा सकता।

• पराध्वनि तरंगों को हृदय के विभिन्न भागों से परावर्तित करा कर हृदय का प्रतिबिंब बनाया जाता है। इस तकनीक को “इकोकार्डियोग्राफ़ी” (ECG) कहा जाता है।

• पराध्वनि संसूचक एक ऐसा यंत्र है जो पराध्वनि तरंगों का उपयोग करके मानव शरीर के आंतरिक अंगों का प्रतिबिंब प्राप्त करने के लिए काम में लाया जाता है। इस संसूचक से रोगी के अंगों; जैसे यकृत, पित्ताशय, गर्भाशय, गुर्दे आदि का प्रतिबिंब प्राप्त किया जा सकता है। यह संसूचक को शरीर की असमान्यताएँ, जैसे पित्ताशय तथा गुर्दे में पथरी तथा विभिन्न अंगों में अर्बुद (ट्यूमर) का पता लगाने में सहायता करता है। इस तकनीक में पराध्वनि तरंगें शरीर के ऊतकों में गमन करती हैं तथा उस स्थान से परावर्तित हो जाती हैं जहाँ ऊतक के घनत्व में परिवर्तन होता है। इसके पश्चात् इन तरंगों को विद्युत संकेतों में परिवर्तित किया जाता है जिससे कि उस अंग का प्रतिबिंब बना लिया जाए। इन प्रतिबिंबों को मॉनीटर पर प्रदर्शित किया जाता है या फिल्म पर मुद्रित कर लिया जाता है।

इस तकनीक को अल्ट्रासोनोग्राफी कहते हैं। अल्ट्रासोनोग्राफी का उपयोग गर्भ काल में भ्रूण की जाँच तथा उसके जन्मजात दोषों तथा उसकी वृद्धि की अनियमितताओं का पता लगाने में किया जाता है।

पराध्वनि का उपयोग गुर्दे की छोटी पथरी को बारीक कणों में तोड़ने के लिए भी किया जा सकता है। ये कण बाद में मूत्र के साथ बाहर निकल जाते हैं।

आपने क्या सीखा

• ध्वनि विभिन्न वस्तुओं के कंपन करने के कारण उत्पन्न होती है।

• ध्वनि किसी द्रव्यात्मक माध्यम में अनुदैर्ध्य तरंगों के रूप में संचरित होती है।

• ध्वनि माध्यम में क्रमागत संपीडनों तथा विरलनों के रूप में संचरित होती है।

• ध्वनि संचरण में, माध्यम के कण आगे नहीं बढ़ते, केवल विक्षोभ ही संचरित होता है।

• घनत्व के अधिकतम मान से न्यूनतम मान और पुनः अधिकतम मान के परिवर्तन से एक दोलन पूरा होता है।

• वह न्यूनतम दूरी जिस पर किसी माध्यम का घनत्व या दाब आवर्ती रूप में अपने मान की पुनरावृत्ति करता है, ध्वनि की तरंगदैर्ध्य (λ) कहलाती है।

• तरंग द्वारा माध्यम के घनत्व के एक संपूर्ण दोलन में लिए गए समय को आवर्त काल (T) कहते हैं।

• एकांक समय में होने वाले दोलनों की कुल संख्या को आवृत्ति (v) कहते हैं

• ध्वनि का वेग (v), आवृत्ति (v) तथा तरंगदैर्ध्य (λ) में संबंध है, v = λv

• ध्वनि की चाल मुख्यतः संचरित होने वाले माध्यम की प्रकृति तथा ताप पर निर्भर होती है।

• ध्वनि के परावर्तन के नियम के अनुसार, ध्वनि के आपतन होने की दिशा तथा परावर्तन होने की दिशा, परावर्तक सतह पर खींचे गए अभिलंब से समान कोण बनाते हैं और ये तीनों एक ही तल में होते हैं।

• स्पष्ट प्रतिध्वनि सुनने के लिए मूल ध्वनि तथा परावर्तित ध्वनि के बीच कम से कम 0.1 s का समय अंतराल अवश्य होना चाहिए।

• किसी सभागार में ध्वनि निर्बंध बारंबार परावर्तनों के कारण होता है और इसे अनुरणन कहते हैं।

• ध्वनि के अभिलक्षण जैसे तारत्व, प्रबलता तथा गुणता; संगत तरंगों के गुणों द्वारा निर्धारित होते हैं।

• प्रबलता ध्वनि की तीव्रता के लिए कानों की शारीरिक अनुक्रिया है।

• किसी एकांक क्षेत्रफल से एक सेकंड में गुजरने वाली ध्वनि ऊर्जा को ध्वनि की तीव्रता कहते हैं।

• मानवों में ध्वनि की श्रव्यता की आवृत्तियों का औसत परास 20 Hz से 20 kHz तक है।

• श्रव्यता के परास से कम आवृत्तियों की ध्वनि को ‘अवश्रव्य’ ध्वनि तथा श्रव्यता के परास से अधिक आवृत्ति की ध्वनियों को ‘पराध्वनि’ कहते हैं।

• पराध्वनि के चिकित्सा तथा प्रौद्योगिक क्षेत्रों में अनेक उपयोग हैं।

यह भी पढ़ें : कार्य तथा ऊर्जा : अध्याय 10

अभ्यास

1. ध्वनि क्या है और यह कैसे उत्पन्न होती है?
Ans.
ध्वनि ऊर्जा का एक रूप है जो वस्तु द्वारा वायु में उत्पन्न कंपन के कारण उत्पन्न होती है।

2. एक चित्र की सहायता से वर्णन कीजिए कि ध्वनि के स्रोत के निकट वायु में संपीडन तथा विरलन कैसे उत्पन्न होते हैं।
Ans.

जब किसी वस्तु से ध्वनि उत्पन्न होती है तो कंपन से लगे बल के कारण उसके निकट की वायु के कण एक दूसरे के नजदीक आ जाते हैं। कणों की ऐसी स्थिति को संपीड़न कहते हैं। उसके बाद आगे के कणों का संपीड़न होता है और पहले वाले कण एक दूसरे से दूर चले जाते हैं। इस तरह से पहले वाले कणों का विरलन होता है। संपीड़न और विरलन के क्षेत्र एक के बाद एक पैदा होते रहते हैं। संपीड़न और विरलण की ऋंखला बन जाती है जिससे होकर ध्वनि तरंगे आगे बढ़ती हैं।

3. ध्वनि तरंगों की प्रकृति अनुदैर्ध्य क्यों है?
Ans.
ध्वनि तरंगे माध्यम में संपीड़न तथा विरलन करती है जिसके कारण उनकी गति आगे-पीछे होती है। इसलिए ध्वनि तरंगों की प्रकृति अनुदैर्ध्य है।

4. ध्वनि का कौन सा अभिलक्षण किसी अन्य अंधेरे कमरे में बैठे आपके मित्र की आवाज पहचानने में आपकी सहायता करता है?
Ans.
गुणता (Timbre) ध्वनि का वह अभिलक्षण है जो हमें अंधेरे कमरे में बैठे हमारे मित्र की आवाज पहचानने में सहायता करता है।

5. तड़ित की चमक तथा गर्जन साथ-साथ उत्पन्न होते हैं। लेकिन चमक दिखाई * देने के कुछ सेकंड पश्चात् गर्जन सुनाई देती है। ऐसा क्यों होता है?
Ans.
क्योंकि ध्वनि की चाल प्रकाश की चाल से बहुत कम है। इसलिए ध्वनि की हमारे कानों तक पहुंचाने में समय लगता है। अतः तड़ित की चमक हमें पहले दिखाई देती हैं।

6. किसी व्यक्ति का औसत श्रव्य परास 20 Hz से 20 kHz है। इन दो आवृत्तियों के लिए ध्वनि तरंगों की तरंगदैर्ध्य ज्ञात कीजिए। वायु में ध्वनि का वेग 344 m/s लीजिए।
हल:
वायु में ध्वनि का वेग v = 344 m/s
आवृति v₁ = 20 Hz
माना, ध्वनि तरंगो की तरंगदैर्ध्य = λ₁ m
वेग = आवृति × तरंगदैर्ध्य
v = v₁ x λ₁ 
= 344 = 20 × λ₁ 
λ₁ = 344/20 = 17.2 m

दूसरी स्थिति में,
वायु में ध्वनि का वेग v = 344 m/s
आवृति v₂ = 20000 Hz
माना, ध्वनि तरंगो की तरंगदैर्ध्य = λ2
वेग = आवृति × तरंगदैर्ध्य
v = v₂ × λ2
λ2= 344/20000 = 0.0172 m
अतः, 20 Hz तथा 20 kHz आवृत्तियों के लिए ध्वनि तरंगो की तरंगदैर्ध्य क्रमशः 17.2 m तथा 0.0172m है।

7. दो बालक किसी ऐलुमिनियम पाइप के दो सिरों पर हैं। एक बालक पाइप के एक सिरे पर पत्थर से आघात करता है। दूसरे सिरे पर स्थित बालक तक वायु तथा ऐलुमिनियम से होकर जाने वाली ध्वनि तरंगों द्वारा लिए गए समय का अनुपात ज्ञात कीजिए।
हल :
माना कि ऐलुमिनियम पाइप की लंबाई = x m वायु में ध्वनि का वेग = 346 m/s
इसलिए वायु में ध्वनि द्वारा लिया गया समय (t1) =x/346s
ऐलुमिनियम में ध्वनि का वेग = 6420 m/s ऐलुमिनियम पाइप में ध्वनि द्वारा लिया गया समय (t₂) = x/6420s
इसलिए ध्वनि द्वारा वायु और ऐलुमिनियम में लिए गए समय का अनुपात,
= t1/t₂
= (x/346)/(x/6420)
= 6420/346
= 18.55/1
= 18.55 : 1

8. किसी ध्वनि स्त्रोत की आवृत्ति 100 Hz है। एक मिनट में यह कितनी बार कंपन करेगा?
हल :
स्रोत की आवृत्ति 100Hz
समय = 1 मिनट = 60 सेकंड
इसलिए 1 मिनट या 60s में कंपनों की संख्या = आवृत्ति × समय
= 100 x 60 = 6000

9. क्या ध्वनि परावर्तन के उन्हीं नियमों का पालन करती है जिनका कि प्रकाश की तरंगें करती हैं? इन नियमों को बताइए।
Ans.
हाँ, ध्वनि भी परावर्तन के उन्हीं नियमों का पालन करती है जिनका कि प्रकाश की तरंगें करती हैं। ध्वनि के परावर्तन का नियमः
(i) आपतित ध्वनि तरंग, परावर्तित ध्वनि तरंग तथा आपतन बिंदु पर खींचे गए अभिलंब। ये तीनों एक ही तल में होते हैं।
(ii) परावर्तक पृष्ठ के आपतन बिंदु पर खींचे गए अभिलंब तथा ध्वनि के आपतन होने की दिशा तथा परावर्तन होने की दिशा के बीच का कोण आपस में बराबर होते हैं।
i.e., ∠i = ∠r

10. ध्वनि का एक स्रोत किसी परावर्तक सतह के सामने रखने पर उसके द्वारा प्रदत्त ध्वनि तरंग की प्रतिध्वनि सुनाई देती है। यदि स्रोत तथा परावर्तक सतह की दूरी स्थिर रहे तो किस दिन प्रतिध्वनि अधिक शीघ्र सुनाई देगी (i) जिस दिन तापमान अधिक हो? (ii) जिस दिन तापमान कम हो?
Ans.
जिस दिन तापमान कम होगा उस दिन प्रतिध्वनि अधिक जल्दी सुनाई देगी। ऐसा इसलिए होता है कि घनत्व बढ़ने से ध्वनि की चाल बढ़ जाती है।

11. ध्वनि तरंगों के परावर्तन के दो व्यावहारिक उपयोग लिखिए।
Ans.
ध्वनि तरंगों के दो उपयोग:

• ध्वनि तरंगों के परावर्तन का उपयोग जल में स्थित पिंडो की दूरी मापने के लिए किया जाता है।

• ध्वनि तरंगों के परावर्तन का उपयोग कर, स्टैथोस्कोप जो कि एक चिकित्सा यंत्र है की सहायता से मनुष्य के शरीर के अंदर जैसे: हृदय फेफड़े आदि में उत्पन्न होने वाले ध्वनि को सुनने में किया जाता है।

12. 500 मीटर ऊँची किसी मीनार की चोटी से एक पत्थर मीनार के आधार पर स्थित एक पानी के तालाब में गिराया जाता है। पानी में इसके गिरने की ध्वनि चोटी पर कब सुनाई देगी? (g = 10 m/s² तथा ध्वनि की चाल = 340 m/s)
हल: ऊपर से नीचे गिरते समयः
प्रारभिक वेग u = 0 m/s
त्वरण a = g = 10 m/s²
ऊँचाई h = 500 मीटर
माना, समय = t₁ सेकेंड
गति के दूसरे समीकरण से
h = ut₁ + 1/2 at₁²
⇒500 =0 x t₁ + 1/2 x 10 x t₁²
⇒ 5t₁²  = 500
⇒ t₁² = 100
⇒ t₁ = √100 = 10 सेकेंड

पत्थर के तालाब में गिरने के बाद, ध्वनि चोटी की ओर की नियत से चलती है।
ध्वनि की चाल = 340 m/s
ध्वनि द्वारा तय की गई दूरी h = 500 मीटर
इसलिए, ध्वनि द्वारा ऊपर चोटी तक पहुँचाने में लगा समय t2 = दूरी/चाल = 500/340 = 1.47 सेकेंड कुल समय = t₁ + t2 = 10 +1.47 = 11:47 सेकेंड

अतः, पानी में इसके गिरने की ध्वनि चोटी पर 11.47 सेकेंड के बाद सुनाई देगी।

13. एक ध्वनि तरंग 339 ms की चाल से चलती है। यदि इसकी तरंगदैर्ध्य 1.5 cm हो, तो तरंग की आवृत्ति कितनी होगी? क्या ये श्रव्य होंगी?
हल:
ध्वनि तरंग का वेग, v = 10
तरंगदैर्ध्य, λ = 1.5cm = 0.015m
इसलिए आवृत्ति = v/λ
= 339/0.015 = 22,600 Hz

14. अनुरणन क्या है? इसे कैसे कम किया जा सकता है?
Ans.
किसी बड़े हॉल में उत्पन्न होने वाली ध्वनि दीवारों से बारंबार परावर्तन के कारण काफी समय तक बनी रहती है। यह बारंबार परावर्तन, जिसके कारण ध्वनि का स्थायित्व होता है, अनुरणन कहलाता है। यह अवांछनीय होता है क्योंकि अत्यधिक अनुरणन के कारण स्पष्ट सुनाई नहीं देता हैं।

अनुरणन कम करने के निम्न उपाय हैं:

  • भवन की छतों तथा दीवारों पर ध्वनि अवशोषक पदार्थों जैसे संपीडित फाइबर बोर्ड, खुरदरे प्लास्टर अथवा पर्दै लगाते हैं।
  • सीटों के पदार्थों का चुनाव इनके ध्वनि अवशोषक गुणों के आधार पर करना।

15. ध्वनि की प्रबलता से क्या अभिप्राय है? यह किन कारकों पर निर्भर करती है?
Ans
. ध्वनि की प्रबलता का मतलब है कि ध्वनि कितनी धीमी या तेज है। यह ध्वनि तरंग के आयाम पर निर्भर करती है। कम आयाम काम मतलब है धीमी आवाज, जबकि अधिक आयाम से तेज आवाज उत्पन्न होती है।

16. वस्तुओं को साफ़ करने के लिए पराध्वनि का उपयोग कैसे करते हैं?
Ans.
जिन वस्तुओं को साफ़ करना होता है उन्हें साफ़ करने वाले मार्जन विलयन में पराध्वनि तरंगें भेजी जाती हैं। उच्च आवृत्ति के कारण, धूल, चिकनाई और गंदगी के कण अलग होकर नीचे गिर जाते हैं। इस प्रकार वस्तु पराध्वनि का उपयोग करके पूर्णतया साफ़ की जाती है।

17. किसी धातु के ब्लॉक में दोषों का पता लगाने के लिए पराध्वनि का उपयोग कैसे किया जाता है वर्णन कीजिए।
Ans.
पराध्वनि का उपयोग धातु के ब्लॉकों में दरारों, छिद्रों तथा अन्य दोषों का पता लगाने के लिए किया जाता है। धातु के ब्लॉकों में विद्यमान दरार या छिद्र जो बाहर से दिखाई नहीं देते उसकी मजबूती को कम कर देते हैं। 

पहले पराध्वनि तरंगें धातु के ब्लॉक से गुजारी जाती हैं और फिर प्रेषित तरंगों का पता लगाने के लिए संसूचकों का उपयोग किया जाता है। यदि कही थोड़ी सी भी दरार या छिद्र होता है, तो पराध्वनि तरंगे परिवर्तित हो जाती हैं जो उस धातु में दोष या कमी की उपस्थिति को दर्शाती है।

पेज : 145

1. किसी माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ आपके कानों तक कैसे पहुँचता है?

Ans. जब किसी वस्तु से ध्वनि निकलती है तो उस वस्तु के आसपास के माध्यम के कणों में कंपन शुरु होता है। सबसे पहले नजदीक वाले कणों में कंपन होता है। उसके बाद आगे के कणों पर बल लगने से उनमें कंपन शुरु हो जाता है। इस प्रकार एक कण से दूसरे कण से होते हुए ध्वनि आगे बढ़ती जाती है। ध्वनि का संचरण हमेशा किसी न किसी माध्यम से होकर होता है; जैसे ठोस, द्रव या गैस। माध्यम में ध्वनि द्वारा उत्पन्न विक्षोभ गति करता है न कि माध्यम के कण।

पेज : 148

1. तरंग का कौन-सा गुण निम्नलिखित को निर्धारित करता है?

  1. प्रबलता 
  2. तारत्व

Ans. (a) प्रबलता : ध्वनि तरंग की प्रबलता उसके आयाम द्वारा निर्धारित की जाती है।
(b) तरंग की आवृत्ति तारत्व को निर्धारित करती है।

2. अनुमान लगाइए कि निम्न में से किस ध्वनि का तारत्व अधिक है। 

  1. गिटार 
  2. कार के हॉर्न

Ans.  गिटार का।

पेज : 148

1. किसी ध्वनि तरंग की तरंगदैर्घ्य, आवृत्ति, आवर्त काल तथा आयाम से क्या अभिप्राय है?

Ans. (i) तरंगदैर्घ्य: दो क्रमागत संपीडनों अथवा दो क्रमागत विरलनों के बीच की दूरी तरगदैर्ध्य कहलाती है। SI मात्रक : मीटर (m)

(ii) आवृत्ति: एकांक समय में दोलनों की कुल संख्या ध्वनि तरंग की आवृति कहलाती है। SI मात्रक : हर्ट्ज (Hz)

(iii) आवर्त काल: एक माध्यम में घनत्व के एक संपूर्ण दोलन में लिया गया समय ध्वनि तरंग का आवर्त काल कहलाता है। SI मात्रक : सेकंड (Sec)

(iv) आयाम: किसी माध्यम में मूल स्थिति के दोनों और अधिकतम विक्षोभ को आयाम कहते हैं।

2. किसी ध्वनि तरंग की तरंगदैर्घ्य तथा आवृत्ति उसके वेग से किस प्रकार संबंधित है?

Ans. तरंग का वेग = आवृत्ति × तरंगदैर्ध्य
⇒ v = ν × λ

पेज : 150

1. ध्वनि की प्रबलता तथा तीव्रता में अंतर बताइए।

Ans. प्रबलता: प्रबलता ध्वनि के लिए कानों की संवेदनशीलता की माप है।
तीव्रता: किसी एकांक क्षेत्रफल से एक सेकंड में गुजरने वाली ध्वनि ऊर्जा को ध्वनि की तीव्रता कहते हैं।

पेज : 150

1. वायु, जल या लोहे में से किस माध्यम में ध्वनि सबसे तेज चलती है?

Ans. ध्वनि लोहे में से सबसे तेज 5950 m/s के वेग से चलती है।

ज : 153

1. कंसर्ट हॉल की छतें वक्राकार क्यों होती हैं?

Ans. कंसर्ट हॉल की छतें वक्रकार इसलिए होती हैं जिसमें कि परावर्तन के पश्चात् ध्वनि हॉल के सभी भागों में पहुँच जाए।

पेज : 154

1. सामान्य मनुष्य के कानों के लिए ध्वनि की श्रव्यता का परिसर क्या है?

Ans. औसतन मनुष्य के कान की ध्वनि श्रव्यता का परिसर 20 Hz से 20000Hz है।

2. निम्न से संबंधित आवृत्तियों का परास क्या है?
(a) अवश्रव्य ध्वनि
(b) पराध्वनि

Ans. (a) अवश्रव्य ध्वनि : जिस ध्वनि की आवृत्ति 20Hz से कम हो तो उसे अवश्रव्य (Infrasound) ध्वनि कहते हैं।
(b) पराध्वनि : जिस ध्वनि की आवृत्ति 20kHz से अधिक हो उसे पराश्रव्य (Ultrasound) ध्वनि कहते है।

मेरा नाम सुनीत कुमार सिंह है। मैं कुशीनगर, उत्तर प्रदेश का निवासी हूँ। मैं एक इलेक्ट्रिकल इंजीनियर हूं।

Leave a Comment